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ABSTRACT
Random access schemes are simple and inherently distributed,
yet capable of matching the optimal throughput performance
of centralized scheduling algorithms. The throughput opti-
mality however has been established for activation rules that
are relatively sluggish, and may yield excessive queues and
delays. More aggressive/persistent access schemes have the
potential to improve the delay performance, but it is not
clear if they can offer any universal throughput optimality
guarantees. In this paper, we identify a limit on the ag-
gressiveness of nodes, beyond which instability is bound to
occur in a broad class of networks.

1. INTRODUCTION
Emerging wireless networks typically lack any centralized

access control entity, and instead vitally rely on the individ-
ual nodes to operate autonomously and to efficiently share
the medium in a distributed fashion. This requires the nodes
to schedule their individual transmissions and decide on the
use of a shared medium based on knowledge that is locally
available or only involves limited exchange of information.
A popular mechanism for distributed medium access control
is provided by the so-called Carrier-Sense Multiple-Access
(CSMA) protocol, various incarnations of which are imple-
mented in IEEE 802.11 networks. In the CSMA protocol
each node attempts to access the medium after a certain
back-off time, but nodes that sense activity of interfering
nodes freeze their back-off timer until the medium is sensed
idle.

Despite their asynchronous and distributed nature, CSMA-
like algorithms have been shown to offer the capability of
achieving the full capacity region and thus match the opti-
mal throughput performance of centralized scheduling mech-
anisms operating in slotted time [5,6]. Based on this obser-
vation, various ingenious algorithms have been developed
for finding the back-off rates that yield a particular tar-
get throughput vector or that optimize a certain concave
throughput utility function in scenarios with saturated buffers
[5, 8]. In the same spirit, several effective approaches have
been devised for adapting the transmission lengths based
on backlog information, and been shown to guarantee maxi-
mum stability [4,11]. Here, as in the latter approach, we con-
sider adapting transmission lengths by considering a weight
for each node as a function of its backlog. The aggressive-
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ness of a node, in not releasing the medium once it starts a
transmission, is controlled through its weight.

The maximum-stability guarantees were originally estab-
lished under the condition that the weights of the various
nodes behave as log log(·) functions of the backlogs [11]. Un-
fortunately, such weights can induce excessive backlogs and
delays, which has triggered a strong interest in developing
approaches for improving the delay performance [7, 10, 12].
Motivated by this issue, Ghaderi & Srikant [3] showed that
it is in fact sufficient for weights to behave as log(·) functions
of the backlogs, divided by an arbitrarily slowly increasing
function. These results indicate that the maximum-stability
guarantees are preserved for weights that are essentially log-
arithmic for all practical values of the backlogs, although
asymptotically the weight must grow slower than any loga-
rithmic function of the backlog.

In the present paper, we explore the scope for using more
aggressive weight functions in order to improve the delay
performance while preserving the maximum-stability guar-
antees. We will consider the fluid limits of the system where
dynamics are scaled in both space and time. Fluid lim-
its may be interpreted as first-order approximations of the
original stochastic process, and provide valuable qualitative
insight and a powerful approach for establishing (in)stability
properties. As observed in [1], qualitatively different types
of fluid limits can arise, depending on the structure of the
interference graph, in conjunction with the functional shape
of the weights. For weight functions which grow slower than
log(·), “fast mixing” is guaranteed in any general topology,
where the activity process evolves on a much faster time
scale than the scaled backlogs. Qualitatively similar fluid
limits can arise for more aggressive weight functions as well,
provided the topology is benign. However, aggressive weight
functions can cause “sluggish mixing”, where the activity
process evolves on a much slower time scale than the scaled
backlogs, yielding random oscillatory fluid limits. Such fluid
limits can force the system into inefficient states for extended
periods of time and produce instability.

Main contribution: We will demonstrate instability for
weights that grow faster than γ log(·), for any γ > 1, but
our proof arguments suggest that it can occur for any γ > 0,
in networks with sufficiently many nodes. In other words,
“the near-logarithmic growth condition” on the weights is a
fundamental limit on the aggressiveness of nodes to ensure
maximum stability in any general topology.

The rigorous statement and proof of the fluid limits as
well as all subsequent proofs are omitted in this extended
abstract. We refer the interested reader to [2] for details.



2. MODEL DESCRIPTION
We consider a network of several nodes sharing a wire-

less medium according to a random-access mechanism. The
network is represented by an undirected graph G = (V,E)
where the set of vertices V = {1, . . . , N} correspond to the
various nodes and the set of edges E ⊆ V × V indicate
which pairs of nodes interfere. Define S ⊆ {0, 1}N as the
set of feasible joint activity states, i.e., the incidence vectors
of all the independent sets of the interference graph, and
denote by C = conv(S) the capacity region.

Packets arrive at node i as a Poisson process of rate λi.
The packet transmission times at node i are independent
and exponentially distributed with mean 1/µi. Denote by
ρi = λi/µi the load of node i.

Let U(t) ∈ S represent the joint activity state of the net-
work at time t, with Ui(t) indicating whether node i is active
at time t or not. Denote by Qi(t) the backlog at node i at
time t, i.e., the number of packets waiting for transmission
or in the process of being transmitted.

When a node ends an activity period (consisting of pos-
sibly several back-to-back packet transmissions), it starts a
back-off period. The back-off times of node i are indepen-
dent and exponentially distributed with mean 1. At the end
of the back-off period, the node starts a new transmission
only if none of its neighbors are active, otherwise it starts a
new back-off. When a transmission of node i ends at time t,
it releases the medium and begins a back-off period with
probability exp(−w(Qi(t

−)), or starts the next transmission
otherwise.

We are interested to determine under what conditions the
system is stable, i.e., the Markov process {(U(t), Q(t))}t≥0 is
positive-recurrent. It is easily seen that (ρ1, . . . , ρN ) < σ ∈
C is a necessary condition for that to be the case. In [3], it is
shown that this condition is in fact also sufficient for weight
functions of the form w(Qi) = log(1 + Qi)/gi(Qi), where
gi(Qi) is allowed to increase to infinity at an arbitrarily slow
rate. In particular, w(Qi) = log1−ε(1 + Qi), for any small
positive ε, yields stability.

Results in [1] suggest that more aggressive weight func-
tions can improve the delay performance. In view of these
results, we will examine to what extent the sufficient stabil-
ity conditions of [3] are tight. We will particularly consider
functions that are more aggressive and analyze fluid limits
of the system, as introduced in the next section.

3. FLUID LIMITS AND INSTABILITY RE-
SULTS

In order to obtain fluid limits, the original stochastic pro-
cess is scaled in both space and time. More specifically,
we consider a sequence of processes {(UR(t), QR(t))}t≥0 in-
dexed by a sequence of positive integers R, each governed
by similar statistical laws as the original process, where the
initial states satisfy

∑N
i=1Q

R
i (0) = R and QRi (0)/R→ qi as

R → ∞. The process {(UR(Rt), 1
R
QR(Rt))}t≥0 is referred

to as the fluid-scaled version of the process {(UR(t), QR(t)}t≥0.
Any (possibly random) weak limit {q(t)}t≥0 of the sequence
{ 1
R
QR(t)}t≥0, as R→∞, is called a fluid limit.

We now proceed to demonstrate the potential for “aggres-
sive” weight functions to cause instability. The potential for
instability arises in a broad class of networks, but here we
focus on a “nearly” complete 3-partite graph with two nodes
in each component as shown in Figure 1. The intuitive ex-

planation for the potential instability may be described as
follows. Denote ρ0 = max{ρ1, ρ2}, and assume ρ3 > ρ4 and
ρ5 < ρ6. The fraction of time that at least one of the nodes
1, 2, 3 and 6 is served, must be no less than ρ = ρ0 +ρ3 +ρ6

in order for these nodes to be stable. During some of these
periods nodes 4 or 5 may also be served, but not simulta-
neously, i.e., schedule M4 cannot be used. In other words,
the system cannot be stable if schedule M4 is used for a
fraction of the time larger than 1− ρ. As it turns out, how-
ever, when the weight function is sufficiently aggressive, e.g.,
w(·) = γ log(·), with γ > 1, schedule M4 is in fact persis-
tently used for a fraction of the time that does not tend to 0
as ρ approaches 1, which forces the system to be unstable.

Although the above arguments indicate that invoking sched-
ule M4 is a recipe for trouble, the reason may not be di-
rectly evident from the system dynamics, since no obvious
inefficiency occurs as long as the queues of nodes 4 and 5
are non-empty. However, the fact that the Lyapunov func-
tion L(t) =

∑3
k=1 maxi∈Mk qi(t) may increase while serving

nodes 4 and 5, when q3(t) ≥ q4(t) and q5(t) ≤ q6(t), is
already highly suggestive.

Indeed, serving nodes 4 and 5 may make their queues
smaller than those of nodes 3 and 6, leaving these queues to
be served by themselves at a later stage, at which point inef-
ficiency inevitably occurs. In fact, it can be proved that after
some finite amount of time T0, the fluid limit process enters
a natural state, when q3(t) ≥ q4(t) and q6(t) ≥ q5(t), with
equality only when both sides are zero. As described above,
instability is bound to occur when schedule M4 is used re-
peatedly for substantial periods of time while the fluid limit
process is in a natural state. It is intuitively plausible that
such events occur repeatedly with positive probability, but
a rigorous proof that this leads to instability is far from sim-
ple. Such a proof requires detailed analysis of the underlying
stochastic process (in our case via fluid limits), and its con-
clusion crucially depends on the weight function. Indeed,
the stability results in [3, 4, 11] indirectly indicate that our
network is not rendered unstable for sufficiently cautious
weight functions.

We now characterize the dynamics of the fluid limit pro-
cess. For a weight function γ log(1 + x), γ > 1, the fluid
limit process follows oscillatory piece-wise linear trajecto-
ries, with random switches. In particular, in the fluid limit
a node must completely empty almost surely before it re-
leases the medium. Thus, a transition from one component
to another occurs when one or both queues in that compo-
nent hit zero.

More specifically, any fluid limit {q(t)}t≥0 can be shown
to have the following properties. For notational convenience,
we henceforth assume µi ≡ 1.

1. Piecewise linearity: For each node i, there are count-
ably many positive time intervals [zL, zH), zL < zH < ∞
such that qi(zL) = qi(zH) = 0, qi(z) > 0, z ∈ (zL, zH), as a
consequence of continuity. Define τZ = (1 − λi)zH + λizL,
then almost surely,

qi(s) = λi(s− zL), s ∈ [zL, τZ ] (1)

qi(s) = (τZ − zL)− (1− λi)(s− zL), s ∈ [τZ , zH ]

and, in case zH = ∞, only the first equation in (1) holds.
Linearity as in (1) follows from the choice of γ > 1. Thus
the limiting measure is governed by the joint distribution of
such endpoints, termed switching epochs, as (1) determines
the fluid path by continuity. In general, such fluid limits are
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Figure 1: A network with 4 possible schedules ob-
tained by removing 1 edge from a 3-partite complete
network.

not Markovian. Finally there is no ‘idling’ and queues in
the same component drain together, if at all.

2. Switching: Following the completion of M1 (of strictly
positive duration), the schedules M2, M3 are each begun
with probability 3/8 and M4 with probability 1/4. Similarly
following the completion of M2 for a positive period strictly
after T0, schedule M1 is begun with probability p̄ < 1/2, M3

with probability 1− p̄, and M4 with probability 0. Note that
M3 has an advantage because node 4 drains first under M2.
Moreover the outcome is affected by the queue size at node 3
at the time when it first backs off and hence is affected by
the backoff parameter. Similarly for switching out of M3.
Finally following the completion of a strictly positive M4

period, switching occurs to M2 or to M3 according to which
of nodes 4 and 5 drain first. In case they drain together, one
of these two events will occur and M1 with probability 0.

Let (ρ1, ρ2, ρ3, ρ4, ρ5, ρ6) = ρ(κ1, κ2, κ3, κ4, κ5, κ6) with
max{κ1, κ2} + κ3 + κ6 = 1 and κ3 > κ4 and κ6 > κ5.
The fluid limit process can then be shown to be unstable in
the sense that L(t) =

∑3
k=1 maxi∈Mk qi(t) → ∞ as t → ∞,

as stated in the next theorem.

Theorem 1. Consider the network of Figure 1, with w(x) =
γ log(1 + x) and γ > 1. For any m > 1, there exists a con-
stant ρ∗ = ρ∗(κ,m) < 1, such that for all ρ ∈ (ρ∗, 1],

lim sup
t→∞

E
{

t

Lm(t)

}
= 0,

for any initial state q(0) with |L(0)| = 1.

Corollary 1. For any m > 1, there exists a constant
ρ∗ = ρ∗(κ,m) < 1, such that for all ρ ∈ (ρ∗, 1],

lim inf
t→∞

L(t)

t1/m
=∞,

almost surely.

The original stochastic process is said to be unstable when
{(U(t), Q(t))}t≥0 is transient, and ‖Q(t)‖ → ∞ almost surely
for any initial state Q(0). Exploiting similar arguments as
in Meyn [9], the instability of the original stochastic process
can be deduced from the instability of the fluid limit process.

For the sake of transparency, here we focused on the spe-
cific six-node network of Figure 1, and weights γ log(·) with
γ > 1. Similar instability issues can however arise in a far
broader class of interference graphs, as we have discussed
in [2]. The proof arguments further suggest that instabil-
ity can in fact occur for any γ > 1/K for network sizes

of order K. For example, a graph obtained by duplicat-
ing each node of the six-node network K times is unstable
for any γ > 1/K. The duplication is formally described
as follows. Let I(i) denote the set of neighbors of i. For

each node 1 ≤ i ≤ 6, add K duplicate nodes d
(i)
1 , . . . , d

(i)
K

to the graph, with the same arrival rate λi and the same

initial queue length Qi(0), such that each node d
(i)
j is con-

nected to all the neighbors of node i and their duplicates,

i.e., I(d
(i)
j ) = I(i) ∪l∈I(i) {d(l)

1 , · · · , d(l)
k }, for all 1 ≤ j ≤ K.

We define D
(K)
i := {i, d(i)

1 , . . . , d
(i)
K } as the duplicate collec-

tion of node i. Essentially, for γ > 1/K, each duplicate
collection acts as a super node with γ > 1: although a node
alone may backoff, not all the nodes in the duplicate collec-
tion will backoff simultaneously, thus the collection will not
release the channel until the entire backlogs of the nodes are
cleared (as in the six-node network).
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